Simulador EXANI-II. Módulo Cálculo diferencial e integral EXANI-II, Simulador E-II Demuestra tus conocimientos Cada que realices esta prueba diagnóstica se presentarán algunas preguntas diferentes. ¡Suerte! Primer examen de Cálculo diferencial e integral 0 votos, 0 media 1480 Móduo de Cálculo diferencial e integral 1 / 10 Partiendo de la función: f(x) = 2x3 + 14 Cuál es el valor para: limx→2?f(x) 32 29.9976 30 31 Explicación: Primero debemos calcular algunos valores al aproximarnos por la izquierda: x f(x) 1.999 29.976 1.9999 29.9976 Se puede apreciar que mientras la variable x se aproxima cada vez más a 2 por la izquierda, los valores de sus imágenes f(x) se aproximan a 30, entonces: limx→2-?f(x) = 30 Obtenemos el límite por la derecha, realizando algunos cálculos: x f(x) 2.001 30.024 2.0001 30.0024 Se puede apreciar que mientras la variable x se aproxima cada vez más a 2 por la derecha, los valores de sus imágenes f(x) se aproximan a 30, entonces: limx→2+?f(x) = 30 Como hemos calculado anteriormente, limx→2-?f(x) = limx→2+?f(x) = 30 Y de aquí, podemos afirmar que: limx→2?f(x) = 30 Utiliza [1,n] ∑ (cn + n) = [1,n] ∑ cn + [1,n] ∑ n 2 / 10 Encuentra la suma S = [1,36]: ∑ ( 50n + n ) S = 33963 S = 33300 S = 33966 S = 33971 Explicación: Utilizamos: [1,36]∑ 50n + n = [1,36] ∑ 50n + [1,36] ∑ n Realizando la primera suma: [1,36]∑ 50n = 50 ( 36 ( 36 + 1) / 2 ) ) = 33300 Realizando la segunda suma: [1,36] ∑ n = 36 ( 36 + 1) / 2 ) = 666 Sumando ambas nos da: S = 33966 Recuerda que ∫u du =un+1n+1 3 / 10 Sea: f'(x) =10x4dx Encuentra f(x), donde: f(2) = 70 f(x) = 10x4 + 6 f(x) = 2x5 + 6 f(x) = 10x5 + 6 f(x) = 2x4 + 6 Explicación: Sabemos que: ∫u du =un+1n+1 Realizando nos da igual a: f(x) = 2x5+ k Recuerda que f( 2 ) = 70 , por lo que resolvemos para k: k = 70 - 2(2)5 Lo que nos da que k = 6 f(x) = 2x5 + 6 Utiliza la regla de la cadena para derivación de funciones exponenciales y logarítmicas: 1) Dx [ au] = ln a · au · Dx [ u ] 2) Dx [eu] = eu · Dx [ u ] 3) Dx [ ln u ] = Dx[ u ]u Donde a es una constante y u es función de x 4 / 10 Encuentra la derivada f'(x) de la siguiente función: f(x) = e( -8x - 25 ) (-8) e-8x -8 e( -8x - 25 ) (-8x - 25) e( -8x - 25 ) e( -8x - 25 ) Explicación: Haciendo: u = -8x - 25 Aplicando la regla de la cadena para la función exponencial: Dx [eu] = eu · Dx [ u ] Y sustituyendo f'(x) = e( -8x - 25 ) (Dx [-8x - 25]) Esto es, derivando y acomodando: f'(x) = -8 e( -8x - 25 ) Recuerda que: ∫udu =un+1n+1 5 / 10 Encuentra la integral "I" de: ∫-63x8dx -7x9 + k x8 + x9 -63x8 + k -7x9 Explicación: Sabemos que: ∫udu =un+1n+1 Realizando nos da igual a: -7x9 Agregamos k como el diferencial: -7x9+ k El cálculo de límites por métodos algebraicos se basa en la aplicación de Teoremas o Propiedades de Límites 6 / 10 Calcula el siguiente límite: limx→7?(x - 7)(x - 7) (x + 3) -0.1 0.1111 ∅ 0.1 Explicación: Si hacemos la sustitución directa de 7 en f(x) obtenemos la indeterminación matemática 0/0. Pero eso NO significa que el Límite No exista, pues podemos eliminar la indeterminación cancelando los terminos idénticos: limx→7?(x - 7)(x - 7) (x + 3)=limx→7?1(x + 3) Ahora sí, para esta nueva expresión, hacemos la sustitución de 7 en f(x): 1 / (7 + 3) limx→7?1(x + 3) = 1(7 + 3) = 110 Entonces, el límite es: 110 O expresada en decimales: 0.1 Aplica las reglas básicas de derivación. 7 / 10 Calcula la derivada f'(x) de la siguiente función: f(x)=5x3 15x2 15x3 5x2 15x Explicación: Aplicando la regla DX [ k u ] = k DX [ u ], nos queda la expresión: 5Dx[x3] Y luego, usando la regla DX [ x n ] = n x n - 1, obtenemos: 5(3x3-1) Entonces, la respuesta es: f'(x)=15x2 8 / 10 Encuentra el área comprendida entre: f(x) = x2 - 3 g(x) = 4 - x2 En el rango [0, 1.87], observa que es una suma de áreas. A = 9.03 A = 9.53 A = 8.73 A = 8.23 Explicación: Sabemos que la integral de f(x) es: ∫01.87( x2 - 3) dx = (x33 - 3x)|01.87 Evaluamos en 0 y en 1.87: I(0) = $A1a$ I(1.87) = $A1b$ A1 = 3.43 También sabemos que la integral de g(x) es: ∫01.87( 4 - x2) dx = (4x -x33)|01.87 Evaluamos en 0 y en 1.87: I(0) = $A2a$ I(1.87) = $A2b$ A2 = 5.3 por lo que el area entre las funciones en el rango [0, 1.87] es A = 3.43 - 5.3 A = 8.73 Aplica las reglas básicas de derivación. 9 / 10 Calcula la derivada f'(x) de la siguiente función: f(x)=-9x-3 27x-3 -9x-4 27x 27x-4 Explicación: Aplicando la regla DX [ k u ] = k DX [ u ], nos queda la expresión: -9Dx[x-3] Y luego, usando la regla DX [ x n ] = n x n - 1, obtenemos: -9(-3x-3-1) Entonces, la respuesta es: f'(x)=27x-4 Aplica las reglas básicas de derivación, según corresponda: 1) Dx [ k ] = 0 2) Dx [ x ] = 1 3) Dx [ xn ] = n xn-1 4) Dx [ k u ] = k Dx [ u ] 5) Dx [ u ± v ] = Dx [ u ] ± Dx [ v ] 6) Dx [ u · v ] = Dx [ u ] · v + u · Dx [ v ] 7) Dx [ uv ] = ( Dx [ u ] · v - u · Dx [ v ] )v2 Donde: k es una constante, u y v son funciones de x. 10 / 10 Calcula la derivada f'(x) de la siguiente función: f(x) = -8x8 + 6x5 - 3x3 + 5x - 45 -64 x7 + 30 x4 - 9 xx2 + 5 x -64 x7 + 30 x4 - 9 x2 + 5 -64 x8 + 30 x5 - 9 x3 + 5 x -64 x7 + 30 x4 - 9 x2 + 5x - 45 Explicación: Aplicando la regla 5 y la regla 4 simultáneamente, separamos el polinomio: (-8) Dx [ x8] + (6) Dx [ x5] - (3) Dx [ x3] + (5) Dx [ x ] - Dx [ 45 ] Y luego, usando las reglas 3, 2 y 1 obtenemos: (-8)(8)( x8-1) + (6)(5)( x5-1) - (3) (3)( x3-1) + (5)(1) - 0 Entonces, la respuesta es: f'(x) = -64 x7 + 30 x4 - 9 x2 + 5 Tu puntación es La puntuación media es 51% LinkedIn Facebook 0% Reiniciar Por Wordpress Quiz plugin