Demuestra tus conocimientos

Cada que realices esta prueba diagnóstica se presentarán algunas preguntas diferentes. ¡Suerte!

Primer examen de Cálculo diferencial e integral

0 votos, 0 media
1478

Móduo de Cálculo diferencial e integral

Utiliza la regla de la cadena para derivación de funciones exponenciales y logarítmicas:

1) Dx [ au] = ln a · au · Dx [ u ] 2) Dx [eu] = eu · Dx [ u ] 3) Dx [ ln u ] = Dx[ u ]u

Donde a es una constante y u es función de x

1 / 10

Encuentra la derivada f'(x) de la siguiente función:

f(x) = e( -8x - 25 )

Recuerda que

sec2 u du = tan u

2 / 10

Encuentra la integral de

16x7 sec2( x8) dx

Aplica una de las reglas básicas de derivación, según corresponda:
(k es una constante, u y v son funciones de x)
1) D? [ k ] = 0
2) D? [ x ] = 1
3) D? [ x n ] = n x n - 1
4) D? [ k u ] = k D? [ u ]
5) D? [ u ± v ] = D? [ u ] ± D? [ v ]
6) D? [ u · v ] = D? [ u ] · v + u · D? [ v ]
7) D? [ u / v ] = ( D? [ u ] · v - u · D? [ v ] ) / v2

3 / 10

Calcula la derivada f'(x) de la siguiente función:
f(x) = -17

El cálculo de límites por métodos algebraicos se basa en la aplicación de Teoremas o Propiedades de Límites

4 / 10

Calcula el siguiente límite:

limx→5?(x -5) (x +5)(x - 5)

Aplica las reglas básicas de derivación.

5 / 10

Calcula la derivada f'(x) de la siguiente función:

f(x)=-9x-3

Aplica las reglas básicas de derivación.

6 / 10

Calcula la derivada f'(x) de la siguiente función:

f(x)=5x3

Utiliza

[1,n] ∑ (cn + n) = [1,n] ∑ cn + [1,n] ∑ n

7 / 10

Encuentra la suma S = [1,36]:

∑ ( 50n + n )

El cálculo de límites por métodos algebraicos se basa en la aplicación de Teoremas o Propiedades de Límites

8 / 10

Calcula el siguiente límite:

limx→7?(x - 7)(x - 7) (x + 3)

 

Aplica las reglas básicas de derivación, según corresponda:

1) Dx [ k ] = 0 2) Dx [ x ] = 1 3) Dx [ xn ] = n xn-1 4) Dx [ k u ] = k Dx [ u ] 5) Dx [ u ± v ] = Dx [ u ] ± Dx [ v ] 6) Dx [ u · v ] = Dx [ u ] · v + u · Dx [ v ] 7) Dx [ uv ] = ( Dx [ u ] · v - u · Dx [ v ] )v2

Donde: k es una constante, u y v son funciones de x.

9 / 10

Calcula la derivada f'(x) de la siguiente función:

f(x) = -8x8 + 6x5 - 3x3 + 5x - 45

10 / 10

Encuentra el área comprendida entre:

f(x) = x2 - 3

g(x) = 4 - x2


En el rango [0, 1.87], observa que es una suma de áreas.

Tu puntación es

La puntuación media es 51%

0%