Demuestra tus conocimientos

Cada que realices esta prueba diagnóstica se presentarán algunas preguntas diferentes. ¡Suerte!

/10
0 votos, 0 media
7528

Simulador EXANI-II. Pensamiento matemático

Debes utilizar el máximo común divisor (mcm). De todos los divisores que cumplen ese requisito, se busca el más grande.

1 / 10

Se debe dividir un terreno de 108 m de ancho por 252 m de largo, en secciones cuadradas iguales que sean lo más grande posible para diferentes cultivos. ¿Cuál es la medida, en metros, que deben tener sus lados?

Suma la medida de la línea y el espacio entre líneas; convierte los kilómetros a metros y procede a realizar la división.

2 / 10

La distancia de la Ciudad de México a Acapulco es de 395 kilómetros. Si en esa carretera las líneas que separan los carriles miden 5 metros y la separación entre ellas es de 6 metros, ¿cuántas líneas tiene pintadas ese tramo carretero?

El porcentaje es 7, la cantidad es 20

3 / 10

En septiembre el precio del jitomate era de $20 por Kg. 28 meses más tarde ha disminuido en 7 por ciento ¿Cuál ha sido la disminución de su precio?

Compara los datos de la tabla con su representacion gráfica.

4 / 10

La tabla presenta la cantidad de hombres y mujeres que adquirieron un teléfono celular durante una semana. ¿Cuál gráfica muestra correctamente dicha información?

 
Lunes
Martes
Miércoles
Jueves
Viernes
Hombres
45
80
45
65
60
Mujeres
65
85
55
65
70

Si utilizas el método de sustitución debes despejar una incógnita en una ecuación y sustituirla en la otra ecuación.
Podrías empezar así:
Tenemos el conjunto de ecuaciones

V1L1 + L2

L1 + V3L2
= R3
= R4

Despejamos c en la segunda ecuación

L1 + V3L2

L1
= R4
= R4 - V3L2

Ahora sustituye el valor de c en la otra ecuación.

5 / 10

Juan compró 5 kgs de jamón (c) y un kilogramo de queso (x) por 320 pesos. Al día siguiente compró un kilogramo de jamón y 3 kilogramos de queso por 260 pesos. ¿Si los precios por kilogramo se mantuvieron fijos en las dos compras, cuánto cuesta el kilogramo de jamón y cuánto el de queso?

Observa que se trata de una proporción directa; es decir, si una cantidad aumenta, la otra también.

6 / 10

Si  398 gramos de material de una mina se obtienen 49 gramos de oro, ¿Cúantos gramos de oro hay en  3  kilogramos de material de la mina?

Busca en que rango se ajusta.

7 / 10

La siguiente tabla muestra la distribución del número de piezas defectuosas que se detectan al revisar 25 lotes de 1000 teclados inalámbricos cada uno.
¿Cuál es la probabilidad de que haya 6 teclados defectuosos en un lote?

Teclados defectuosos por lote Número de casos
1 0 - 3 7
2 4 - 6 1
3 7 - 9 9
4 10 - 14 3
5 15 - 16 5

Calcula el área del cuadrado y del semicírculo por separado.
Recuerda que la fórmula para determinar el área de un cuadrado es:

 

A = L2

Un semicírculo es la mitad de un círculo, y por lo tanto su área es:

 

S = p r22

 

8 / 10

Determine la superficie en azul que se debe pintar. Se trata de una pared cuadrada en el que hay una ventana en forma de semicírculo cuyo diámetro es igual al largo del cuadrado exterior. El valor de x es de 5 m.

En un producto de potencias, éstas se suman:

am · an = am+n

9 / 10

Simplifica la expresión

s-3 · s7

La fórmula para calcular el área de un cuadrado es:

A = L2

 

10 / 10

Calcula el área de un cuadrado cuyo lado mide 7.89 cm.

Tu puntación es

La puntuación media es 55%

0%