Para las ingenierías, la arquitectura y las ciencias exactas se utiliza este módulo de Cálculo diferencia e integral, que con 24 preguntas evalúa el dominio de este conocimiento especializado de las matemáticas.

Busca saber si los aspirantes a la universidad conocen el teorema fundamental del Cálculo y los conceptos de límite de funciones, los procesos de derivación e integración, la derivada y la integral, con los cuales es posible solucionar diversos problemas, tanto teóricos, como de aplicación a situaciones o fenómenos reales.

Los siguientes son los temas que de acuerdo con la guía oficial serán evaluados.  

Para las ingenierías, la arquitectura y las ciencias exactas se utiliza este módulo de Cálculo diferencia e integral, que con 24 preguntas evalúa el dominio de este conocimiento especializado de las matemáticas.

Busca saber si los aspirantes a la universidad conocen el teorema fundamental del Cálculo y los conceptos de límite de funciones, los procesos de derivación e integración, la derivada y la integral, con los cuales es posible solucionar diversos problemas, tanto teóricos, como de aplicación a situaciones o fenómenos reales.

Los siguientes son los temas que de acuerdo con la guía oficial serán evaluados.  

Cálculo diferencial
  • Límites
  • La derivada
  • Aplicaciones de la derivada
Cálculo Integral
  • Límites
  • Métodos de integración
  • Aplicaciones de la integral definida

El siguiente examen te puede orientar sobre los temas en los que debes prestar marpy atención.

¡Suerte! 

0 votos, 0 media
1375

Móduo de Cálculo diferencial e integral

Resuelve por partes

1 / 10

Sea la función:

f'(x) = 20x19 + 11x10
Encuentra f(x).

Aplica las reglas básicas de derivación, según corresponda:

1) Dx [ k ] = 0 2) Dx [ x ] = 1 3) Dx [ xn ] = n xn-1 4) Dx [ k u ] = k Dx [ u ] 5) Dx [ u ± v ] = Dx [ u ] ± Dx [ v ] 6) Dx [ u · v ] = Dx [ u ] · v + u · Dx [ v ] 7) Dx [ uv ] = ( Dx [ u ] · v - u · Dx [ v ] )v2

Donde: k es una constante, u y v son funciones de x.

2 / 10

Calcula la derivada f'(x) de la siguiente función:

f(x) = -8x8 + 6x5 - 3x3 + 5x - 45

Recuerda que:

∫udu =un+1n+1

3 / 10

Encuentra la integral "I" de:

∫-63x8dx

Recuerda que

sec2 u du = tan u

4 / 10

Encuentra la integral de

16x7 sec2( x8) dx

5 / 10

Encuentra el área comprendida entre:

f(x) = x2 - 3

g(x) = 4 - x2


En el rango [0, 1.87], observa que es una suma de áreas.

Utiliza la regla de la cadena para derivación de funciones exponenciales y logarítmicas:

1) Dx [ au] = ln a · au · Dx [ u ] 2) Dx [eu] = eu · Dx [ u ] 3) Dx [ ln u ] = Dx[ u ]u

Donde a es una constante y u es función de x

6 / 10

Encuentra la derivada f'(x) de la siguiente función:

f(x) = e( -8x - 25 )

h = 0.5gt2, donde g = 9.81 m/s2

7 / 10

Un niño arroja una piedra en un acantilado. Tras esperar 14.25 segundos, escucha que la piedra toca el fondo. Determina la altura (en metros).

Aplica las reglas básicas de derivación.

8 / 10

Calcula la derivada f'(x) de la siguiente función:

f(x)=5x3

Recuerda que

∫u du =un+1n+1

9 / 10

Sea:

f'(x) =10x4dx

Encuentra f(x), donde:

f(2) = 70

10 / 10

Partiendo de la función:

f(x) = 2x3 + 14

Cuál es el valor para:

limx→2?f(x)

 

Tu puntación es

La puntuación media es 51%

0%